Importance of the Transformer Models in Forecasting and Classification of Time Series
DOI:
https://doi.org/10.35406/MI.2024.1.35Keywords:
informatics, mathematics, data scienceAbstract
Transformer models have brought significant advancements in time series analysis due to their ability to capture long-term dependencies. This study examines the fundamental structure, strengths, and limitations of transformer models (deep learning architectures) in time series modeling. It presents various transformer variants for time series and discusses their applications in forecasting, classification, and anomaly detection, as well as the explainability and interpretability.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Boros Gerzson Dávid
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Creative Commons licens
A cikkeket a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License alatt publikálják, amelyek iparági szabvány keretet nyújt a nyílt hozzáférésű anyagok egyszerű újrafelhasználásának támogatásához. A Creative Commons alatt a szerzők megtartják műveik szerzői jogait.